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pyphe  docs

A Python 3 library for Partially Homomorphic Encryption using the
Paillier crypto system [https://en.wikipedia.org/wiki/Paillier_cryptosystem].

The homomorphic properties of the paillier crypto system are:


	Encrypted numbers can be multiplied by a non encrypted scalar.

	Encrypted numbers can be added together.

	Encrypted numbers can be added to non encrypted scalars.
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Example

>>> from phe import paillier
>>> public_key, private_key = paillier.generate_paillier_keypair()
>>> secret_number_list = [3.141592653, 300, -4.6e-12]
>>> encrypted_number_list = [public_key.encrypt(x) for x in secret_number_list]
>>> [private_key.decrypt(x) for x in encrypted_number_list]
[3.141592653, 300, -4.6e-12]





See Usage for more extensive examples taking advantage of the homomorphic
properties of the paillier cryptosystem.
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Installation

At the command line:

$ pip install .





Or, if you have virtualenvwrapper installed:

$ mkvirtualenv phe
$ pip install phe
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Usage

There are two roles that use this library. In the first, you control the private keys. In the
second, you don’t. This guide shows you how to play either role.

In either case, you of course begin by importing the library:

from phe import paillier






Role #1

This party holds the private keys and typically will generate the keys and do the decryption.


Key generation

First, you’re going to have to generate a public and private key pair:

>>> public_key, private_key = paillier.generate_paillier_keypair()





If you’re going to have lots of private keys lying around, then perhaps you should invest in
a keyring on which to store your PaillierPrivateKey instances:

>>> keyring = paillier.PaillierPrivateKeyring()
>>> keyring.add(private_key)
>>> public_key1, private_key1 = paillier.generate_paillier_keypair(keyring)
>>> public_key2, private_key2 = paillier.generate_paillier_keypair(keyring)





In any event, you can then start encrypting numbers:

>>> secret_number_list = [3.141592653, 300, -4.6e-12]
>>> encrypted_number_list = [public_key.encrypt(x) for x in secret_number_list]





Presumably, you would now share the ciphertext with whoever is playing Role 2
(see Serialisation).




Decryption

To decrypt an EncryptedNumber, use the relevant
PaillierPrivateKey:

>>> [private_key.decrypt(x) for x in encrypted_number_list]
[3.141592653, 300, -4.6e-12]





If you have multiple key pairs stored in a PaillierPrivateKeyring,
then you don’t need to manually find the relevant PaillierPrivateKey:

>>> [keyring.decrypt(x) for x in encrypted_number_list]
[3.141592653, 300, -4.6e-12]










Role #2

This party does not have access to the private keys, and typically performs operations on
supplied encrypted data with their own, unencrypted data.

Once this party has received some EncryptedNumber instances (e.g. see
Serialisation), it can perform basic mathematical operations supported by the Paillier
encryption:


	Addition of an EncryptedNumber to a scalar

	Addition of two EncryptedNumber instances

	Multiplication of an EncryptedNumber by a scalar



>>> a, b, c = encrypted_number_list
>>> a
<phe.paillier.EncryptedNumber at 0x7f60a28c90b8>

>>> a_plus_5 = a + 5
>>> a_plus_b = a + b
>>> a_times_3_5 = a * 3.5





as well as some simple extensions:

>>> a_minus_1_3 = a - 1             # = a + (-1)
>>> a_div_minus_3_1 = a / -3.1      # = a * (-1 / 3.1)
>>> a_minus_b = a - b               # = a + (b * -1)





Numpy operations that rely only on these operations are allowed:

>>> import numpy as np
>>> enc_mean = np.mean(encrypted_number_list)
>>> enc_dot = np.dot(encrypted_number_list, [2, -400.1, 5318008])





Operations that aren’t supported by Paillier’s partially homomorphic scheme raise an error:

>>> a * b
NotImplementedError: Good luck with that...

>>> 1 / a
TypeError: unsupported operand type(s) for /: 'int' and 'EncryptedNumber'





Once the necessary computations have been done, this party would send the resulting
EncryptedNumber instances back to the holder of the private keys for
decryption.

In some cases it might be possible to boost performance by reducing the precision of floating point numbers:

>>> a_times_3_5_lp = a * paillier.EncodedNumber.encode(a.public_key, 3.5, 1e-2)








Serialisation

This library does not do the serialisation for you. Every EncryptedNumber
instance has a public_key attribute, and serialising each
EncryptedNumber independently would be heinously inefficient when sending
a large list of instances. It is up to you to serialise in a way that is efficient for your use
case.

If you want to send a list of values encrypted against one public key, the following is one way to serialise:

>>> import json
>>> enc_with_one_pub_key = {}
>>> enc_with_one_pub_key['public_key'] = {'g': public_key.g,
...                                       'n': public_key.n}
>>> enc_with_one_pub_key['values'] = [
...     (x.ciphertext(), x.exponent) for x in encrypted_number_list
... ]
>>> serialised = json.dumps(enc_with_one_pub_key)





Deserialisation of the above scheme might look as follows:

>>> received_dict = json.loads(serialised)
>>> pk = received_dict['public_key']
>>> public_key_rec = paillier.PaillierPublicKey(g=int(pk['g']),
...                                             n=int(pk['n']))
>>> enc_nums_rec = [
...     paillier.EncryptedNumber(public_key_rec, int(x[0]), int(x[1]))
...     for x in received_dict['values']
... ]





If both parties already know public_key, then you might instead send a hash of the public key.
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Security Caveats


Information leakage

The exponent of an
EncryptedNumber is not encrypted. By default, for floating
point numbers this leads to some information leakage about the magnitude of the
encrypted value. This leakage can be patched up by deciding on a fixed value for
all exponents as part of the protocol; then for each
EncryptedNumber,
decrease_exponent_to() can be called before
sharing. In practice this exponent should be a lower bound for any exponent that
would naturally arise.




No audit

This code has neither been written nor vetted by any sort of crypto expert. The crypto
parts are mercifully short, however.
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API Documentation

Paillier encryption library for partially homomorphic encryption.


	
class phe.paillier.EncodedNumber(public_key, encoding, exponent)

	Bases: builtins.object

Represents a float or int encoded for Paillier encryption.

For end users, this class is mainly useful for specifying precision
when adding/multiplying an EncryptedNumber by a scalar.

If you want to manually encode a number for Paillier encryption,
then use encode(), if de-serializing then use
__init__().

Notes

Paillier encryption is only defined for non-negative integers less
than PaillierPublicKey.n. Since we frequently want to use
signed integers and/or floating point numbers (luxury!), values
should be encoded as a valid integer before encryption.

The operations of addition and multiplication [1] must be
preserved under this encoding. Namely:


	Decode(Encode(a) + Encode(b)) = a + b

	Decode(Encode(a) * Encode(b)) = a * b



for any real numbers a and b.

Representing signed integers is relatively easy: we exploit the
modular arithmetic properties of the Paillier scheme. We choose to
represent only integers between
+/-max_int, where max_int is
approximately n/3 (larger integers may
be treated as floats). The range of values between max_int and
n - max_int is reserved for detecting overflows. This encoding
scheme supports properties #1 and #2 above.

Representing floating point numbers as integers is a harder task.
Here we use a variant of fixed-precision arithmetic. In fixed
precision, you encode by multiplying every float by a large number
(e.g. 1e6) and rounding the resulting product. You decode by
dividing by that number. However, this encoding scheme does not
satisfy property #2 above: upon every multiplication, you must
divide by the large number. In a Paillier scheme, this is not
possible to do without decrypting. For some tasks, this is
acceptable or can be worked around, but for other tasks this can’t
be worked around.

In our scheme, the “large number” is allowed to vary, and we keep
track of it. It is:


BASE ** exponent


One number has many possible encodings; this property can be used
to mitigate the leak of information due to the fact that
exponent is never encrypted.

For more details, see encode().

Footnotes




	[1]	Technically, since Paillier encryption only supports
multiplication by a scalar, it may be possible to define a
secondary encoding scheme Encode’ such that property #2 is
relaxed to:


Decode(Encode(a) * Encode’(b)) = a * b


We don’t do this.










	Parameters:	
	public_key (PaillierPublicKey) – public key for which to encode
(this is necessary because max_int
varies)

	encoding (int) – The encoded number to store. Must be positive and
less than max_int.

	exponent (int) – Together with BASE, determines the level
of fixed-precision used in encoding the number.










	
public_key

	PaillierPublicKey

public key for which to encode
(this is necessary because max_int
varies)






	
encoding

	int

The encoded number to store. Must be positive and
less than max_int.






	
exponent

	int

Together with BASE, determines the level
of fixed-precision used in encoding the number.






	
BASE = 16

	




	
FLOAT_MANTISSA_BITS = 53

	




	
LOG2_BASE = 4.0

	




	
decode()

	Decode plaintext and return the result.





	Returns:	an int or float: the decoded number. N.B. if the number
returned is an integer, it will not be of type float.


	Raises:	OverflowError – 
if overflow is detected in the decrypted number.










	
decrease_exponent_to(new_exp)

	Return an EncodedNumber with same value but lower exponent.

If we multiply the encoded value by BASE and decrement
exponent, then the decoded value does not change. Thus
we can almost arbitrarily ratchet down the exponent of an
EncodedNumber - we only run into trouble when the encoded
integer overflows. There may not be a warning if this happens.

This is necessary when adding EncodedNumber instances,
and can also be useful to hide information about the precision
of numbers - e.g. a protocol can fix the exponent of all
transmitted EncodedNumber to some lower bound(s).





	Parameters:	new_exp (int) – the desired exponent.


	Returns:	Instance with the same value and desired
exponent.


	Return type:	EncodedNumber


	Raises:	ValueError – 
You tried to increase the exponent, which can’t be
done without decryption.










	
classmethod encode(public_key, scalar, precision=None, max_exponent=None)

	Return an encoding of an int or float.

This encoding is carefully chosen so that it supports the same
operations as the Paillier cryptosystem.

If scalar is a float, first approximate it as an int, int_rep:


scalar = int_rep * (BASE ** exponent),


for some (typically negative) integer exponent, which can be
tuned using precision and max_exponent. Specifically,
exponent is chosen to be equal to or less than
max_exponent, and such that the number precision is not
rounded to zero.

Having found an integer representation for the float (or having
been given an int scalar), we then represent this integer as
a non-negative integer < n.

Paillier homomorphic arithemetic works modulo
n. We take the convention that a
number x < n/3 is positive, and that a number x > 2n/3 is
negative. The range n/3 < x < 2n/3 allows for overflow
detection.





	Parameters:	
	public_key (PaillierPublicKey) – public key for which to encode
(this is necessary because n
varies).

	scalar – an int or float to be encrypted.
If int, it must satisfy abs(value) <
n/3.
If float, it must satisfy abs(value / precision) <<
n/3
(i.e. if a float is near the limit then detectable
overflow may still occur)

	precision (float) – Choose exponent (i.e. fix the precision) so
that this number is distinguishable from zero. If scalar
is a float, then this is set so that minimal precision is
lost. Lower precision leads to smaller encodings, which
might yield faster computation.

	max_exponent (int) – Ensure that the exponent of the returned
EncryptedNumber is at most this.






	Returns:	Encoded form of scalar, ready for encryption
against public_key.




	Return type:	EncodedNumber
















	
class phe.paillier.EncryptedNumber(public_key, ciphertext, exponent=0)

	Bases: builtins.object

Represents the Paillier encryption of a float or int.

Typically, an EncryptedNumber is created by
PaillierPublicKey.encrypt(). You would only instantiate an
EncryptedNumber manually if you are de-serializing a number
someone else encrypted.

Paillier encryption is only defined for non-negative integers less
than PaillierPublicKey.n. EncodedNumber provides
an encoding scheme for floating point and signed integers that is
compatible with the partially homomorphic properties of the Paillier
cryptosystem:


	D(E(a) * E(b)) = a + b

	D(E(a)**b)     = a * b



where a and b are ints or floats, E represents encoding then
encryption, and D represents decryption then decoding.





	Parameters:	
	public_key (PaillierPublicKey) – the PaillierPublicKey
against which the number was encrypted.

	ciphertext (int) – encrypted representation of the encoded number.

	exponent (int) – used by EncodedNumber to keep track of
fixed precision. Usually negative.










	
public_key

	PaillierPublicKey

the PaillierPublicKey
against which the number was encrypted.






	
exponent

	int

used by EncodedNumber to keep track of
fixed precision. Usually negative.









	Raises:	TypeError – 
if ciphertext is not an int, or if public_key is
not a PaillierPublicKey.






	
__add__(other)

	Add an int, float, EncryptedNumber or EncodedNumber.






	
__mul__(other)

	Multiply by an int, float, or EncodedNumber.






	
__radd__(other)

	Called when Python evaluates 34 + <EncryptedNumber>
Required for builtin sum to work.






	
_add_encoded(encoded)

	Returns E(a + b), given self=E(a) and b.





	Parameters:	encoded (EncodedNumber) – an EncodedNumber to be added
to self.


	Returns:	E(a + b), calculated by encrypting b and
taking the product of E(a) and E(b) modulo
n ** 2.


	Return type:	EncryptedNumber


	Raises:	ValueError – 
if scalar is out of range or precision.










	
_add_encrypted(other)

	Returns E(a + b) given E(a) and E(b).





	Parameters:	other (EncryptedNumber) – an EncryptedNumber to add to self.


	Returns:	E(a + b), calculated by taking the product
of E(a) and E(b) modulo n ** 2.


	Return type:	EncryptedNumber


	Raises:	ValueError – 
if numbers were encrypted against different keys.










	
_add_scalar(scalar)

	Returns E(a + b), given self=E(a) and b.





	Parameters:	scalar – an int or float b, to be added to self.


	Returns:	E(a + b), calculated by encrypting b and
taking the product of E(a) and E(b) modulo
n ** 2.


	Return type:	EncryptedNumber


	Raises:	ValueError – 
if scalar is out of range or precision.










	
_raw_add(e_a, e_b)

	Returns the integer E(a + b) given ints E(a) and E(b).

N.B. this returns an int, not an EncryptedNumber, and ignores
ciphertext





	Parameters:	
	e_a (int) – E(a), first term

	e_b (int) – E(b), second term






	Returns:	E(a + b), calculated by taking the product of E(a) and
E(b) modulo n ** 2.




	Return type:	int












	
_raw_mul(plaintext)

	Returns the integer E(a * plaintext), where E(a) = ciphertext





	Parameters:	plaintext (int) – number by which to multiply the
EncryptedNumber. plaintext is typically an encoding.
0 <= plaintext < n




	Returns:	Encryption of the product of self and the scalar
encoded in plaintext.




	Return type:	int




	Raises:	
	TypeError – 
if plaintext is not an int.

	ValueError – 
if plaintext is not between 0 and
PaillierPublicKey.n.














	
ciphertext(be_secure=True)

	Return the ciphertext of the EncryptedNumber.

Choosing a random number is slow. Therefore, methods like
__add__() and __mul__() take a shortcut and do not
follow Paillier encryption fully - every encrypted sum or
product should be multiplied by r **
n for random r < n (i.e., the result
is obfuscated). Not obfuscating provides a big speed up in,
e.g., an encrypted dot product: each of the product terms need
not be obfuscated, since only the final sum is shared with
others - only this final sum needs to be obfuscated.

Not obfuscating is OK for internal use, where you are happy for
your own computer to know the scalars you’ve been adding and
multiplying to the original ciphertext. But this is not OK if
you’re going to be sharing the new ciphertext with anyone else.

So, by default, this method returns an obfuscated ciphertext -
obfuscating it if necessary. If instead you set be_secure=False
then the ciphertext will be returned, regardless of whether it
has already been obfuscated. We thought that this approach,
while a little awkward, yields a safe default while preserving
the option for high performance.





	Parameters:	be_secure (bool) – If any untrusted parties will see the
returned ciphertext, then this should be True.


	Returns:	an int, the ciphertext. If be_secure=False then it might be
possible for attackers to deduce numbers involved in
calculating this ciphertext.










	
decrease_exponent_to(new_exp)

	Return an EncryptedNumber with same value but lower exponent.

If we multiply the encoded value by EncodedNumber.BASE and
decrement exponent, then the decoded value does not change.
Thus we can almost arbitrarily ratchet down the exponent of an
EncryptedNumber - we only run into trouble when the encoded
integer overflows. There may not be a warning if this happens.

When adding EncryptedNumber instances, their exponents must
match.

This method is also useful for hiding information about the
precision of numbers - e.g. a protocol can fix the exponent of
all transmitted EncryptedNumber instances to some lower bound(s).





	Parameters:	new_exp (int) – the desired exponent.


	Returns:	Instance with the same plaintext and desired
exponent.


	Return type:	EncryptedNumber


	Raises:	ValueError – 
You tried to increase the exponent.










	
obfuscate()

	Disguise ciphertext by multiplying by r ** n with random r.

This operation must be performed for every EncryptedNumber
that is sent to an untrusted party, otherwise eavesdroppers
might deduce relationships between this and an antecedent
EncryptedNumber.

For example:

enc = public_key.encrypt(1337)
send_to_nsa(enc)       # NSA can't decrypt (we hope!)
product = enc * 3.14
send_to_nsa(product)   # NSA can deduce 3.14 by bruteforce attack
product2 = enc * 2.718
product2.obfuscate()
send_to_nsa(product)   # NSA can't deduce 2.718 by bruteforce attack














	
class phe.paillier.PaillierPrivateKey(public_key, Lambda, mu)

	Bases: builtins.object

Contains a private key and associated decryption method.





	Parameters:	
	public_key (PaillierPublicKey) – The corresponding public
key.

	Lambda (int) – private secret - see Paillier’s paper.

	mu (int) – private secret - see Paillier’s paper.










	
public_key

	PaillierPublicKey

The corresponding public
key.






	
Lambda

	int

private secret - see Paillier’s paper.






	
mu

	int

private secret - see Paillier’s paper.






	
decrypt(encrypted_number)

	Return the decrypted & decoded plaintext of encrypted_number.





	Parameters:	encrypted_number (EncryptedNumber) – an
EncryptedNumber with a public key that matches this
private key.




	Returns:	the int or float that EncryptedNumber was holding. N.B. if
the number returned is an integer, it will not be of type
float.




	Raises:	
	TypeError – 
If encrypted_number is not an
EncryptedNumber.

	ValueError – 
If encrypted_number was encrypted against a
different key.














	
decrypt_encoded(encrypted_number)

	Return the EncodedNumber decrypted from encrypted_number.





	Parameters:	encrypted_number (EncryptedNumber) – an
EncryptedNumber with a public key that matches this
private key.




	Returns:	EncodedNumber: The decrypted plaintext.




	Raises:	
	TypeError – 
If encrypted_number is not an
EncryptedNumber.

	ValueError – 
If encrypted_number was encrypted against a
different key.














	
raw_decrypt(ciphertext)

	Decrypt raw ciphertext and return raw plaintext.





	Parameters:	ciphertext (int) – an int (usually from
encrypted_number.ciphertext()) that is to be
Paillier decrypted.


	Returns:	Paillier decryption of ciphertext. This is a positive
integer < public_key.n.


	Return type:	int


	Raises:	TypeError – 
if ciphertext is not an int.














	
class phe.paillier.PaillierPrivateKeyring(private_keys=[])

	Bases: collections.abc.Mapping

Holds several private keys and can decrypt using any of them.

Acts like a dict, supports del(), and []() for getting,
but adding keys is done using add().





	Parameters:	private_keys (list of PaillierPrivateKey) – an optional starting
list of PaillierPrivateKey instances.






	
add(private_key)

	Add a key to the keyring.





	Parameters:	private_key (PaillierPrivateKey) – a key to add to this keyring.










	
decrypt(encrypted_number)

	Return the decrypted & decoded plaintext of encrypted_number.





	Parameters:	encrypted_number (EncryptedNumber) – an
EncryptedNumber encrypted against a known public
key, i.e., one for which the private key is on this keyring.


	Returns:	the int or float that encrypted_number was holding. N.B. if
the number returned is an integer, it will not be of type
float.


	Raises:	KeyError – 
If the keyring does not hold the private key that
decrypts encrypted_number.














	
class phe.paillier.PaillierPublicKey(g, n)

	Bases: builtins.object

Contains a public key and associated encryption methods.





	Parameters:	
	g (int) – part of the public key - see Paillier’s paper.

	n (int) – part of the public key - see Paillier’s paper.










	
g

	int

part of the public key - see Paillier’s paper.






	
n

	int

part of the public key - see Paillier’s paper.






	
nsquare

	int

n ** 2, stored for frequent use.






	
max_int

	int

Maximum int that may safely be stored. This can be
increased, if you are happy to redefine “safely” and lower the
chance of detecting an integer overflow.






	
encrypt(value, precision=None, r_value=None)

	Encode and Paillier encrypt a real number value.





	Parameters:	
	value – an int or float to be encrypted.
If int, it must satisfy abs(value) < n/3.
If float, it must satisfy abs(value / precision) <<
n/3
(i.e. if a float is near the limit then detectable
overflow may still occur)

	precision (float) – Passed to EncodedNumber.encode().
If value is a float then precision is the maximum
absolute error allowed when encoding value. Defaults
to encoding value exactly.

	r_value (int) – obfuscator for the ciphertext; by default (i.e.
if r_value is None), a random value is used.






	Returns:	An encryption of value.




	Return type:	EncryptedNumber




	Raises:	ValueError – 
if value is out of range or precision is so
high that value is rounded to zero.












	
get_random_lt_n()

	Return a cryptographically random number less than n






	
raw_encrypt(plaintext, r_value=None)

	Paillier encryption of a positive integer plaintext < n.

You probably should be using encrypt() instead, because it
handles positive and negative ints and floats.





	Parameters:	
	plaintext (int) – a positive integer < n to be Paillier
encrypted. Typically this is an encoding of the actual
number you want to encrypt.

	r_value (int) – obfuscator for the ciphertext; by default (i.e.
r_value is None), a random value is used.






	Returns:	Paillier encryption of plaintext.




	Return type:	int




	Raises:	TypeError – 
if plaintext is not an int.
















	
phe.paillier.generate_paillier_keypair(private_keyring=None, n_length=1024)

	Return a new PaillierPublicKey and PaillierPrivateKey.

Add the private key to private_keyring if given.





	Parameters:	
	private_keyring (PaillierPrivateKeyring) – a
PaillierPrivateKeyring on which to store the private
key.

	n_length – key size in bits.






	Returns:	The generated PaillierPublicKey and
PaillierPrivateKey




	Return type:	tuple












Utilities


	
phe.util.getprimeover(N)

	Return a random N-bit prime number using the System’s best
Cryptographic random source.

Use GMP if available, otherwise fallback to PyCrypto






	
phe.util.invert(a, b)

	The multiplicitive inverse of a in the integers modulo b.





	Return int:	x, where a * x == 1 mod b










	
phe.util.powmod(a, b, c)

	Uses GMP, if available, to do a^b mod c where a, b, c
are integers.





	Return int:	(a ** b) % c
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Alternative Libraries


Python Libraries


charm-crypto

> Charm is a framework for rapidly prototyping advanced cryptosystems.  Based on
> the Python language, it was designed from the ground up to minimize development
> time and code complexity while promoting the reuse of components.
>
> Charm uses a hybrid design: performance intensive mathematical operations are
> implemented in native C modules, while cryptosystems themselves are written in
> a readable, high-level language.  Charm additionally provides a number of new
> components to facilitate the rapid development of new schemes and protocols.

http://charm-crypto.com/Main.html




Paillier Code, Pascal Paillier (Public-Key)

https://github.com/JHUISI/charm/blob/master/charm/schemes/pkenc/pkenc_paillier99.py

Worth looking at their object hierarchy, e.g., http://jhuisi.github.io/charm/toolbox/PKEnc.html
They use a Ciphertext class which has the __add__ and __mul__ methods overridden.


Example:

>>> from charm.toolbox.integergroup import RSAGroup
>>> group = RSAGroup()
>>> pai = Pai99(group)
>>> (public_key, secret_key) = pai.keygen()
>>> msg_1=12345678987654321
>>> msg_2=12345761234123409
>>> msg_3 = msg_1 + msg_2
>>> msg_1 = pai.encode(public_key['n'], msg_1)
>>> msg_2 = pai.encode(public_key['n'], msg_2)
>>> msg_3 = pai.encode(public_key['n'], msg_3)
>>> cipher_1 = pai.encrypt(public_key, msg_1)
>>> cipher_2 = pai.encrypt(public_key, msg_2)
>>> cipher_3 = cipher_1 + cipher_2
>>> decrypted_msg_3 = pai.decrypt(public_key, secret_key, cipher_3)
>>> decrypted_msg_3 == msg_3
True





They have even got it going on Android: http://jhuisi.github.io/charm/mobile.html






mikeivanov/paillier

> Pure Python Paillier Homomorphic Cryptosystem

Very simple easy to understand code. Doesn’t use a Paillier object. No external dependencies.
Based on the java library: https://code.google.com/p/thep/

https://github.com/mikeivanov/paillier

Example Usage:

In [1]: from paillier import *
In [2]: priv, pub = generate_keypair(128)
In [3]: x = encrypt(pub, 2)
In [4]: y = encrypt(pub, 3)
In [5]: x,y
Out[5]:
(72109737005643982735171545918..., 9615446835366886883470187...)
In [6]: z = e_add(pub, x, y)
In [7]: z
Out[7]: 71624230283745591274688669...
In [8]: decrypt(priv, pub, z)
Out[8]: 5L






Tests:

Could easily be reused.

https://github.com/mikeivanov/paillier/blob/master/tests/test_paillier.py






encrypted-bigquery-client

License: Apache 2.0

> Paillier encryption to perform homomorphic addition on encrypted data

The ebq client is an experimental client which encrypts data in the specified fields
before loading to Bigquery service. Currently there are various limitations including
support for only a subset of query types on encrypted data.

Paillier specific code:

http://pydoc.net/Python/encrypted_bigquery/1.0/paillier/

Uses openssl via ctypes.

Features a Paillier object with the following methods:


	__init__(seed=None, g=None, n=None, Lambda=None, mu=None)

	Encrypt(plaintext, r_value=None)

	Decrypt(ciphertext)

	Add(ciphertext1, ciphertext2) - returns E(m1 + m2) given E(m1) and E(m2)

	Affine(self, ciphertext, a=1, b=0) - Returns E(a*m + b) given E(m), a and b

	EncryptInt64/DecryptInt64 - twos complement to allow negative addition

	EncryptFloat/DecryptFloat - IEEE754 binary64bit where exponent <= 389



Code is well documented python2. Most arguments are long or int types.
There is also a comprehensive unit test at http://pydoc.net/Python/encrypted_bigquery/1.0/paillier_test/

Even if we don’t reuse any of their code the tests would be great.

#### Floating point notes in code:

Paillier homomorphic addition only directly adds positive binary values,
however, we would like to add both positive and negative float values
of different magnitudes. To achieve this, we will:


	represent the mantissa and exponent as one long binary value. This means
that with 1024 bit n in paillier, the maximum exponent value is 389 bits.

	represent negative values with twos complement representation.

	Nan, +inf, -inf are each indicated by values in there own 32 bit region,
so that when one of them is added, the appropriate region would be
incremented and we would know this in the final aggregated value, assuming
less than 2^32 values were aggregated.

	We limit the number of numbers that can be added to be less than 2^32
otherwise we would not be able to detect overflows properly, etc.

	Also, in order to detect overflow after adding multiple values,
the 64 sign bit is extended (or replicated) for an additional 64 bits.
This allows us to detect if an overflow happened and knowing whether the
most significant 32 bits out of 64 is zeroes or ones, we would know if the
result should be a +inf or -inf.



Project Home: https://code.google.com/p/encrypted-bigquery-client/






C/C++


Encounter

> Encounter is a software library aimed at providing a production-grade
> implementation of cryptographic counters

To date, Encounter implements a cryptocounter based on the Paillier
public-key cryptographic scheme

https://github.com/secYOUre/Encounter




FNP privacy-preserving set intersection protocol

A toolchain and library for privacy-preserving set intersection

It comes with rudimentary command-line interface: client, server, and
key-generation tool.  Extension and reuse is possible through C++ interfaces.
The implementation is fully thread-aware and multi-core ready, thus
computation time can be shortened by modern many-core machines.  We have verified
significant performance gains with quad-core Xeons and Opterons, through the
use of bucket allocation in the algorithm.

For homomorphic encryption and decryption, both modified ElGamal cryptosystem and
Paillier cryptosystem have been implemented on top of gmp.  And yes, the source
of randomness is always a headache for cryptosystem implementers; we have
keyboard, file and network packet as the sources of entropy.

It requires OpenSSL, gmp, gmpxx, boost, pthread, and pcap to build.
It currently runs on Linux.

http://fnp.sourceforge.net/




libpaillier

Library written in C and uses GMP.
The privss toolkit for private stream searching is built on libpaillier.

http://hms.isi.jhu.edu/acsc/libpaillier/




### HElib

> HElib is a software library that implements homomorphic encryption (HE).
> Currently available is an implementation of the Brakerski-Gentry-Vaikuntanathan
> (BGV) scheme, along with many optimizations to make homomorphic evaluation runs
> faster, focusing mostly on effective use of the Smart-Vercauteren ciphertext
> packing techniques and the Gentry-Halevi-Smart optimizations.
>
> At its present state, this library is mostly meant for researchers working on
> HE and its uses. Also currently it is fairly low-level, and is best thought of
> as “assembly language for HE”. That is, it provides low-level routines (set, add,
> multiply, shift, etc.), with as much access to optimizations as we can give.
> Hopefully in time we will be able to provide higher-level routines.

https://github.com/shaih/HElib

Must read: http://tommd.github.io/posts/HELib-Intro.html




rinon/Simple-Homomorphic-Encryption

Another C++ fully homomorphic encryption implementation.

https://github.com/rinon/Simple-Homomorphic-Encryption






Javascript

Javascript Cryptography Considered Harmful - http://www.matasano.com/articles/javascript-cryptography/


mhe/jspaillier

Adds the methods to the Public and Private keys.

Dependencies: jsbn
Demo Site: http://mhe.github.io/jspaillier/




p2p-paillier

> allows a peer to add two numbers over a peer-to-peer network. Peers add
> these two numbers without even knowing what they are. It uses Firebase
> (which is centralized) in order to push commands to the peers.

Demo: http://9ac345a5509a.github.io/p2p-paillier/
Code: https://github.com/9ac345a5509a/p2p-paillier






Haskell

There is a decent-looking haskell paillier library:
https://github.com/onemouth/HsPaillier

BSD license

There’s just one test, which encrypts 37, decrypts it, and checks that it’s still 37.




Java

There are a bunch of paillier libraries for java.

Are there any tests?


UT Dallas

This one has documentation and two implementations:

https://www.utdallas.edu/~mxk093120/paillier/javadoc/paillierp/package-summary.html


Provides the structures and methods to encrypt data with the Paillier encryption scheme with thresholding. This package a simplified implementation of what is specified in the paper A Generalization of Paillier’s Public-Key System with Applications to Electronic Voting by Damgård et al. Within this paper, the authors generalize the Paillier encryption scheme to permit computations modulo ns+1, allowing block length for encryption to be chosen freely. In addition to this undertaking, Damgård et al. also constructed a threshold variant of the scheme.


	This package provides the following features of the paper

	
	The degree of n is fixed to 1.

	A fully functional simple Paillier encryption scheme with separate key classes for easy keysharing.

	Proper Thresholding for an arbitrary number of decryption servers and threshold needed to decrypt.

	Non-interactive zero knowledge proofs to ensure proper encryption and decryption.







Of particular note, this implementation is simple as s is fixed to be 1. This allows for simplicity at this stage of the design. Further, we hope to have added methods which would make the actual use of this package to be easy and flexible.

Future features would include support for encrypting arbitrary length strings/byte arrays to avoid padding issues.







BGU Crypto course

This one is also documented but is for a crypto course so I’m not sure
how complete/practical it is intended to be. For example, it does its own keygen using java.util.Random.
https://code.google.com/p/paillier-cryptosystem/




UMBC

This one is mercifully short but doesn’t implement add, multiply as functions or methods. Also it uses java.util.Random.

http://www.csee.umbc.edu/~kunliu1/research/Paillier.html
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