
Python Paillier Documentation
Release 1.3.1

NICTA

Jan 25, 2018





Contents

1 Installation 3
1.1 Using pip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Manual installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Docker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Usage 5
2.1 Role #1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Role #2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Serialisation 9
3.1 Basic JSON Serialisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 JWK Serialisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Security Caveats 13
4.1 Information leakage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Alternative Base for EncodedNumber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3 No audit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.4 Number Encoding Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 Command Line Utility 15
5.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.2 Usage Help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.3 Example Session . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.4 Bash Completion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

6 API Documentation 19
6.1 Paillier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.2 Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.3 Utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7 Compatibility with other libraries 29
7.1 Alternative Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

8 Example 35

Python Module Index 37

i



ii



Python Paillier Documentation, Release 1.3.1

A Python 3 library for Partially Homomorphic Encryption using the Paillier crypto system.

The homomorphic properties of the Paillier crypto system are:

• Encrypted numbers can be multiplied by a non encrypted scalar.

• Encrypted numbers can be added together.

• Encrypted numbers can be added to non encrypted scalars.

Contents 1
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CHAPTER 1

Installation

The python-paillier library requires a minimum Python version of at least 3.3.

Note: A big integer math library is used to increase the speed of python-paillier and to access a cryptographic random
source. All big integer math has been implemented with GMP - the GNU Multiple Precision arithmetic library. This
dependency should be installed for your operating system.

On Ubuntu systems the following packages should be installed:

libmpc-dev libmpfr-dev libmpfr4 libgmp3-dev

1.1 Using pip

Using pip at the command line, to install the base library from PyPi:

$ pip install phe

To also install the command line utility, introduced at version 1.2:

pip install "phe[cli]>1.2"

Examples have been written which have their own additional requirements such as sklearn. To also install those:

pip install "phe[cli,examples]"

Or, if you have virtualenvwrapper installed:

$ mkvirtualenv phe
$ pip install -e ".[CLI]"

3
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1.2 Manual installation

To install from the source package, first install any of the (optional) dependencies (eg pycrypto, gmpy2). A list can be
found in requirements.txt.

Then install as normal:

$ python setup.py install

1.3 Docker

A minimal Docker file based on alpine linux:

FROM python:3-alpine
RUN ["apk", "add", "--no-cache", \

"g++", \
"musl-dev", \
"gmp-dev", \
"mpfr-dev", \
"mpc1-dev" \

]
RUN pip install phe

4 Chapter 1. Installation



CHAPTER 2

Usage

There are two roles that use this library. In the first, you control the private keys. In the second, you don’t. This guide
shows you how to play either role.

In either case, you of course begin by importing the library:

from phe import paillier

2.1 Role #1

This party holds the private keys and typically will generate the keys and do the decryption.

2.1.1 Key generation

First, you’re going to have to generate a public and private key pair:

>>> public_key, private_key = paillier.generate_paillier_keypair()

If you’re going to have lots of private keys lying around, then perhaps you should invest in a keyring on which to store
your PaillierPrivateKey instances:

>>> keyring = paillier.PaillierPrivateKeyring()
>>> keyring.add(private_key)
>>> public_key1, private_key1 = paillier.generate_paillier_keypair(keyring)
>>> public_key2, private_key2 = paillier.generate_paillier_keypair(keyring)

In any event, you can then start encrypting numbers:

>>> secret_number_list = [3.141592653, 300, -4.6e-12]
>>> encrypted_number_list = [public_key.encrypt(x) for x in secret_number_list]

5
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Presumably, you would now share the ciphertext with whoever is playing Role 2 (see Serialisation and Compatibility
with other libraries).

2.1.2 Decryption

To decrypt an EncryptedNumber, use the relevant PaillierPrivateKey:

>>> [private_key.decrypt(x) for x in encrypted_number_list]
[3.141592653, 300, -4.6e-12]

If you have multiple key pairs stored in a PaillierPrivateKeyring, then you don’t need to manually find the
relevant PaillierPrivateKey:

>>> [keyring.decrypt(x) for x in encrypted_number_list]
[3.141592653, 300, -4.6e-12]

2.2 Role #2

This party does not have access to the private keys, and typically performs operations on supplied encrypted data with
their own, unencrypted data.

Once this party has received some EncryptedNumber instances (e.g. see Serialisation), it can perform basic
mathematical operations supported by the Paillier encryption:

1. Addition of an EncryptedNumber to a scalar

2. Addition of two EncryptedNumber instances

3. Multiplication of an EncryptedNumber by a scalar

>>> a, b, c = encrypted_number_list
>>> a
<phe.paillier.EncryptedNumber at 0x7f60a28c90b8>

>>> a_plus_5 = a + 5
>>> a_plus_b = a + b
>>> a_times_3_5 = a * 3.5

as well as some simple extensions:

>>> a_minus_1_3 = a - 1 # = a + (-1)
>>> a_div_minus_3_1 = a / -3.1 # = a * (-1 / 3.1)
>>> a_minus_b = a - b # = a + (b * -1)

Numpy operations that rely only on these operations are allowed:

>>> import numpy as np
>>> enc_mean = np.mean(encrypted_number_list)
>>> enc_dot = np.dot(encrypted_number_list, [2, -400.1, 5318008])

Operations that aren’t supported by Paillier’s partially homomorphic scheme raise an error:

>>> a * b
NotImplementedError: Good luck with that...

6 Chapter 2. Usage
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>>> 1 / a
TypeError: unsupported operand type(s) for /: 'int' and 'EncryptedNumber'

Once the necessary computations have been done, this party would send the resulting EncryptedNumber instances
back to the holder of the private keys for decryption.

In some cases it might be possible to boost performance by reducing the precision of floating point numbers:

>>> a_times_3_5_lp = a * paillier.EncodedNumber.encode(a.public_key, 3.5, 1e-2)

2.2. Role #2 7
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CHAPTER 3

Serialisation

This library does not enforce any particular serialisation scheme.

Every EncryptedNumber instance has a public_key attribute, and serialising each EncryptedNumber in-
dependently would be heinously inefficient when sending a large list of instances. It is up to you to serialise in a way
that is efficient for your use case.

3.1 Basic JSON Serialisation

This basic serialisation method is an example of serialising a vector of encrypted numbers. Note that if you are only
using the python-paillier library g will always be n + 1, so these is no need to serialise it as part of the public key.

To send a list of values encrypted against one public key, the following is one way to serialise:

>>> import json
>>> enc_with_one_pub_key = {}
>>> enc_with_one_pub_key['public_key'] = {'n': public_key.n}
>>> enc_with_one_pub_key['values'] = [
... (str(x.ciphertext()), x.exponent) for x in encrypted_number_list
... ]
>>> serialised = json.dumps(enc_with_one_pub_key)

Deserialisation of the above scheme might look as follows:

>>> received_dict = json.loads(serialised)
>>> pk = received_dict['public_key']
>>> public_key_rec = paillier.PaillierPublicKey(n=int(pk['n']))
>>> enc_nums_rec = [
... paillier.EncryptedNumber(public_key_rec, int(x[0]), int(x[1]))
... for x in received_dict['values']
... ]

If both parties already know public_key, then you might instead send a hash of the public key.

9
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3.2 JWK Serialisation

This serialisation scheme is used by the Command Line Utility, and is based on the JSON Web Key (JWK) format.
This serialisation scheme should be used to increase compatibility between libraries. All cryptographic integers are
represented as Base64UrlEncoded numbers. Note the existence of base64_to_int() and int_to_base64().

3.2.1 “kty” (Key Type) Parameter

We define the family for all Paillier keys as “DAJ” for Damgard Jurik.

3.2.2 “alg” (Algorithm) Parameter

We identify the algorithm for our Paillier keys as: “PAI-GN1”

3.2.3 “key_ops” (Key Operations) Parameter

Values will be “encrypt” and “decrypt” for public and private keys respectively. We decided not to add homomorphic
properties to the key operations.

3.2.4 “kid” (Key Identifier)

The kid may be set to any ascii string. Useful for storing key names, generation tools, times etc.

3.2.5 Public Key

In addition to the “kty”, “kid”, “key_ops” and “alg” attributes, a public key will have:

• n The public key’s modulus - Base64 url encoded

Example of a 256 bit public key:

python -m phe.command_line genpkey --keysize 256 - | python -m phe.command_line
→˓extract - -
{

"kty": "DAJ",
"kid": "Example Paillier public key",
"key_ops": [ "encrypt" ],
"n": "m0lOEwDHVA_VieL2k3BKMjf_HIgagfhNIZy1YhgZF5M",
"alg": "PAI-GN1"

}

3.2.6 Private Key

Note: The serialised private key includes the public key.

In addition to the “kty”, “kid”, “key_ops” and “alg” attributes, a private key will have:

• mu and lambda - The private key’s secrets. See Paillier’s paper for details.

10 Chapter 3. Serialisation

https://tools.ietf.org/html/rfc7517#section-4


Python Paillier Documentation, Release 1.3.1

• pub - The Public Key serialised as described above.

Example of a 256 bit private key:

python -m phe.command_line genpkey --keysize 256 -
{

"mu": "Dzq1_tz2qDX_-S4shia9Rw34Z9ix9b-fhPi3In76NaI",
"kty": "DAJ",
"key_ops": [ "decrypt" ],
"kid": "Paillier private key generated by pheutil on 2016-05-24 14:18:25",
"lambda": "haFTvA70KcI5XXReJUlQWRQdYHxaUS8baGQGug9dewA",
"pub": {

"alg": "PAI-GN1",
"n": "haFTvA70KcI5XXReJUlQWoZus12aSJJ5EXAvu93xR7k",
"kty": "DAJ",
"key_ops": [ "encrypt" ],
"kid": "Paillier public key generated by pheutil on 2016-05-24 14:18:25"

}
}

Warning: “kty” and “alg” values should be registered in the IANA “JSON Web Key Types” registry established
by JWA. We have not registered DAJ or PAI-GN1 - however we intend to begin that conversation.

3.2. JWK Serialisation 11
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CHAPTER 4

Security Caveats

4.1 Information leakage

The exponent of an EncryptedNumber is not encrypted. By default, for floating point numbers this leads to some
information leakage about the magnitude of the encrypted value. This leakage can be patched up by deciding on a fixed
value for all exponents as part of the protocol; then for each EncryptedNumber, decrease_exponent_to()
can be called before sharing. In practice this exponent should be a lower bound for any exponent that would naturally
arise.

4.2 Alternative Base for EncodedNumber

If you need to interact with a library using another base, create a simple subclass of paillier.EncodedNumber
and ensure you include the BASE and LOG2_BASE attributes:

class AltEncodedNumber(paillier.EncodedNumber):
BASE = 2
LOG2_BASE = math.log(BASE, 2)

Warning: As always, if you don’t require a specific value for the unencrypted exponents after an operation, you
might be leaking information about what happened - but with smaller bases this problem is exacerbated.

4.3 No audit

This code has neither been written nor vetted by any sort of crypto expert. The crypto parts are mercifully short,
however.

13



Python Paillier Documentation, Release 1.3.1

4.4 Number Encoding Scheme

Represents a float or int encoded for Paillier encryption.

For end users, this class is mainly useful for specifying precision when adding/multiplying an EncryptedNumber
by a scalar.

Any custom encoding scheme that results in an unsigned integer is supported.

Notes: Paillier encryption is only defined for non-negative integers less than PaillierPublicKey.n. Since we
frequently want to use signed integers and/or floating point numbers (luxury!), values should be encoded as a
valid integer before encryption.

The operations of addition and multiplication1 must be preserved under this encoding. Namely:

1. Decode(Encode(a) + Encode(b)) = a + b

2. Decode(Encode(a) * Encode(b)) = a * b

for any real numbers a and b.

Representing signed integers is relatively easy: we exploit the modular arithmetic properties of the Paillier
scheme. We choose to represent only integers between +/-max_int, where max_int is approximately n/3
(larger integers may be treated as floats). The range of values between max_int and n - max_int is reserved for
detecting overflows. This encoding scheme supports properties #1 and #2 above.

Representing floating point numbers as integers is a harder task. Here we use a variant of fixed-precision
arithmetic. In fixed precision, you encode by multiplying every float by a large number (e.g. 1e6) and rounding
the resulting product. You decode by dividing by that number. However, this encoding scheme does not satisfy
property #2 above: upon every multiplication, you must divide by the large number. In a Paillier scheme, this is
not possible to do without decrypting. For some tasks, this is acceptable or can be worked around, but for other
tasks this can’t be worked around.

In our scheme, the “large number” is allowed to vary, and we keep track of it. It is:

BASE ** exponent

One number has many possible encodings; this property can be used to mitigate the leak of information due to
the fact that exponent is never encrypted.

For more details, see encode().

1 Technically, since Paillier encryption only supports multiplication by a scalar, it may be possible to define a secondary encoding scheme
Encode’ such that property #2 is relaxed to:

Decode(Encode(a) * Encode’(b)) = a * b
We don’t do this.
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CHAPTER 5

Command Line Utility

This cli interface allows a user to:

• generate and serialize key pairs (of different key sizes)

• encrypt and serialize given a public key and a plaintext number

• decrypt given a private key and the ciphertext

• add two encrypted numbers together

• add an encrypted number to a plaintext number

• multiply an encrypted number to a plaintext number

5.1 Installation

The command line utility is not installed by default. When installing with pip you must specify the optional extra eg:

pip install "phe[cli]" --upgrade

After Installation, the pheutil command line program will be installed on your path.

To use the command line client without installing python-paillier, run the phe.command_line module from the
project root:

python -m phe.command_line

5.2 Usage Help

For commands, and examples call –help:

15
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$ pheutil --help

Usage: pheutil [OPTIONS] COMMAND [ARGS]...

CLI for interacting with python-paillier

Options:
--version Show the version and exit.
-v, --verbose Enables verbose mode.
--help Show this message and exit.

Commands:
add Add encrypted number to unencrypted number.
addenc Add two encrypted numbers together.
decrypt Decrypt ciphertext with private key.
encrypt Encrypt a number with public key.
extract Extract public key from private key.
genpkey Generate a paillier private key.
multiply Multiply encrypted num with unencrypted num.

Each command also includes more detail, e.g. for genpkey:

$ pheutil genpkey --help
Usage: pheutil genpkey [OPTIONS] OUTPUT

Generate a paillier private key.

Output as JWK to given output file. Use "-" to output the private key to
stdout. See the extract command to extract the public component of the
private key.

Note: The default ID text includes the current time.

Options:
--keysize INTEGER The keysize in bits. Defaults to 2048
--id TEXT Add an identifying comment to the key

5.3 Example Session

$ pheutil genpkey --keysize 1024 example_private_key.json
Generating a paillier keypair with keysize of 1024
Keys generated
Private key written to example_private_key.json
$ pheutil extract example_private_key.json example_public_key.json
Loading paillier keypair
Public key written to example_public_key.json
$ pheutil encrypt --output test.enc example_public_key.json 5000
Loading public key
Encrypting: +5000.0000000000000000
$ cat test.enc | python -m json.tool
{

"e": -32,
"v":

→˓"8945468961282852256778220989238222172150456425808373953578229301775803205409565637223688006899379858518150634149268673387123813092667724639715011697847472787020974697972558733184395004744948252959649660835719161407306407854534355718203796283103451456746682405859634010362011442548072273622024024463167923466056606817150074423359137917704381669997696942809271828714079014827677816707229329379573217492868913536374239033718507818834874942682659422972598117458546894148344090333255242329686475806834331038677335462130194428967083103705644514152785933564702168267063628303275275994362218144323611010911197842705253655015
→˓"
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}
$ pheutil add --output result.enc example_public_key.json test.enc 100
Loading public key
Loading encrypted number
Loading unencrypted number
Adding
Exponent is less than -32
$ pheutil decrypt example_private_key.json result.enc
Loading private key
Decrypting ciphertext
5100.0

5.4 Bash Completion

Bash completion can be enabled by adding the following to your .bashrc file:

eval "$(_PHEUTIL_COMPLETE=source pheutil)"

Further information on bash completion can be found in the click documentation.

5.4. Bash Completion 17
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CHAPTER 6

API Documentation

6.1 Paillier

Paillier encryption library for partially homomorphic encryption.

class phe.paillier.EncryptedNumber(public_key, ciphertext, exponent=0)
Bases: object

Represents the Paillier encryption of a float or int.

Typically, an EncryptedNumber is created by PaillierPublicKey.encrypt(). You would only instan-
tiate an EncryptedNumber manually if you are de-serializing a number someone else encrypted.

Paillier encryption is only defined for non-negative integers less than PaillierPublicKey.n.
EncodedNumber provides an encoding scheme for floating point and signed integers that is compatible with
the partially homomorphic properties of the Paillier cryptosystem:

1. D(E(a) * E(b)) = a + b

2. D(E(a)**b) = a * b

where a and b are ints or floats, E represents encoding then encryption, and D represents decryption then
decoding.

Parameters

• public_key (PaillierPublicKey) – the PaillierPublicKey against which
the number was encrypted.

• ciphertext (int) – encrypted representation of the encoded number.

• exponent (int) – used by EncodedNumber to keep track of fixed precision. Usually
negative.

public_key
PaillierPublicKey – the PaillierPublicKey against which the number was encrypted.

exponent
int – used by EncodedNumber to keep track of fixed precision. Usually negative.

19
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Raises TypeError – if ciphertext is not an int, or if public_key is not a PaillierPublicKey .

__add__(other)
Add an int, float, EncryptedNumber or EncodedNumber.

__mul__(other)
Multiply by an int, float, or EncodedNumber.

__radd__(other)
Called when Python evaluates 34 + <EncryptedNumber> Required for builtin sum to work.

_add_encoded(encoded)
Returns E(a + b), given self=E(a) and b.

Parameters encoded (EncodedNumber) – an EncodedNumber to be added to self.

Returns

E(a + b), calculated by encrypting b and taking the product of E(a) and E(b) modulo n **
2.

Return type EncryptedNumber

Raises ValueError – if scalar is out of range or precision.

_add_encrypted(other)
Returns E(a + b) given E(a) and E(b).

Parameters other (EncryptedNumber) – an EncryptedNumber to add to self.

Returns

E(a + b), calculated by taking the product of E(a) and E(b) modulo n ** 2.

Return type EncryptedNumber

Raises ValueError – if numbers were encrypted against different keys.

_add_scalar(scalar)
Returns E(a + b), given self=E(a) and b.

Parameters scalar – an int or float b, to be added to self.

Returns

E(a + b), calculated by encrypting b and taking the product of E(a) and E(b) modulo n **
2.

Return type EncryptedNumber

Raises ValueError – if scalar is out of range or precision.

_raw_add(e_a, e_b)
Returns the integer E(a + b) given ints E(a) and E(b).

N.B. this returns an int, not an EncryptedNumber, and ignores ciphertext

Parameters

• e_a (int) – E(a), first term

• e_b (int) – E(b), second term

Returns

E(a + b), calculated by taking the product of E(a) and E(b) modulo n ** 2.

Return type int

20 Chapter 6. API Documentation
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_raw_mul(plaintext)
Returns the integer E(a * plaintext), where E(a) = ciphertext

Parameters plaintext (int) – number by which to multiply the EncryptedNumber. plain-
text is typically an encoding. 0 <= plaintext < n

Returns

Encryption of the product of self and the scalar encoded in plaintext.

Return type int

Raises

• TypeError – if plaintext is not an int.

• ValueError – if plaintext is not between 0 and PaillierPublicKey.n.

ciphertext(be_secure=True)
Return the ciphertext of the EncryptedNumber.

Choosing a random number is slow. Therefore, methods like __add__() and __mul__() take a short-
cut and do not follow Paillier encryption fully - every encrypted sum or product should be multiplied by r
** n for random r < n (i.e., the result is obfuscated). Not obfuscating provides a big speed up in, e.g., an
encrypted dot product: each of the product terms need not be obfuscated, since only the final sum is shared
with others - only this final sum needs to be obfuscated.

Not obfuscating is OK for internal use, where you are happy for your own computer to know the scalars
you’ve been adding and multiplying to the original ciphertext. But this is not OK if you’re going to be
sharing the new ciphertext with anyone else.

So, by default, this method returns an obfuscated ciphertext - obfuscating it if necessary. If instead you set
be_secure=False then the ciphertext will be returned, regardless of whether it has already been obfuscated.
We thought that this approach, while a little awkward, yields a safe default while preserving the option for
high performance.

Parameters be_secure (bool) – If any untrusted parties will see the returned ciphertext,
then this should be True.

Returns

an int, the ciphertext. If be_secure=False then it might be possible for attackers to de-
duce numbers involved in calculating this ciphertext.

decrease_exponent_to(new_exp)
Return an EncryptedNumber with same value but lower exponent.

If we multiply the encoded value by EncodedNumber.BASE and decrement exponent, then the de-
coded value does not change. Thus we can almost arbitrarily ratchet down the exponent of an Encrypted-
Number - we only run into trouble when the encoded integer overflows. There may not be a warning if this
happens.

When adding EncryptedNumber instances, their exponents must match.

This method is also useful for hiding information about the precision of numbers - e.g. a protocol can fix
the exponent of all transmitted EncryptedNumber instances to some lower bound(s).

Parameters new_exp (int) – the desired exponent.

Returns

Instance with the same plaintext and desired exponent.

Return type EncryptedNumber

6.1. Paillier 21
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Raises ValueError – You tried to increase the exponent.

obfuscate()
Disguise ciphertext by multiplying by r ** n with random r.

This operation must be performed for every EncryptedNumber that is sent to an untrusted party, otherwise
eavesdroppers might deduce relationships between this and an antecedent EncryptedNumber.

For example:

enc = public_key.encrypt(1337)
send_to_nsa(enc) # NSA can't decrypt (we hope!)
product = enc * 3.14
send_to_nsa(product) # NSA can deduce 3.14 by bruteforce attack
product2 = enc * 2.718
product2.obfuscate()
send_to_nsa(product) # NSA can't deduce 2.718 by bruteforce attack

class phe.paillier.PaillierPrivateKey(public_key, p, q)
Bases: object

Contains a private key and associated decryption method.

Parameters

• public_key (PaillierPublicKey) – The corresponding public key.

• p (int) – private secret - see Paillier’s paper.

• q (int) – private secret - see Paillier’s paper.

public_key
PaillierPublicKey – The corresponding public key.

p
int – private secret - see Paillier’s paper.

q
int – private secret - see Paillier’s paper.

psquare
int – p^2

qsquare
int – q^2

p_inverse
int – p^-1 mod q

hp
int – h(p) - see Paillier’s paper.

hq
int – h(q) - see Paillier’s paper.

crt(mp, mq)
The Chinese Remainder Theorem as needed for decryption. Returns the solution modulo n=pq.

Parameters

• mp (int) – the solution modulo p.

• mq (int) – the solution modulo q.
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decrypt(encrypted_number)
Return the decrypted & decoded plaintext of encrypted_number.

Uses the default EncodedNumber, if using an alternative encoding scheme, use
decrypt_encoded() or raw_decrypt() instead.

Parameters encrypted_number (EncryptedNumber) – an EncryptedNumber with
a public key that matches this private key.

Returns

the int or float that EncryptedNumber was holding. N.B. if the number returned is an in-
teger, it will not be of type float.

Raises

• TypeError – If encrypted_number is not an EncryptedNumber.

• ValueError – If encrypted_number was encrypted against a different key.

decrypt_encoded(encrypted_number, Encoding=None)
Return the EncodedNumber decrypted from encrypted_number.

Parameters

• encrypted_number (EncryptedNumber) – an EncryptedNumber with a public
key that matches this private key.

• Encoding (class) – A class to use instead of EncodedNumber, the encoding used
for the encrypted_number - used to support alternative encodings.

Returns The decrypted plaintext.

Return type EncodedNumber

Raises

• TypeError – If encrypted_number is not an EncryptedNumber.

• ValueError – If encrypted_number was encrypted against a different key.

static from_totient(public_key, totient)
given the totient, one can factorize the modulus

The totient is defined as totient = (p - 1) * (q - 1), and the modulus is defined as modulus = p * q

Parameters

• public_key (PaillierPublicKey) – The corresponding public key

• totient (int) – the totient of the modulus

Returns the PaillierPrivateKey that corresponds to the inputs

Raises ValueError – if the given totient is not the totient of the modulus of the given public
key

h_function(x, xsquare)
Computes the h-function as defined in Paillier’s paper page 12, ‘Decryption using Chinese-remaindering’.

l_function(x, p)
Computes the L function as defined in Paillier’s paper. That is: L(x,p) = (x-1)/p

raw_decrypt(ciphertext)
Decrypt raw ciphertext and return raw plaintext.
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Parameters ciphertext (int) – (usually from EncryptedNumber.ciphertext())
that is to be Paillier decrypted.

Returns Paillier decryption of ciphertext. This is a positive integer < public_key.n.

Return type int

Raises TypeError – if ciphertext is not an int.

class phe.paillier.PaillierPrivateKeyring(private_keys=None)
Bases: collections.abc.Mapping

Holds several private keys and can decrypt using any of them.

Acts like a dict, supports del(), and indexing with [], but adding keys is done using add().

Parameters private_keys (list of PaillierPrivateKey) – an optional starting list
of PaillierPrivateKey instances.

add(private_key)
Add a key to the keyring.

Parameters private_key (PaillierPrivateKey) – a key to add to this keyring.

decrypt(encrypted_number)
Return the decrypted & decoded plaintext of encrypted_number.

Parameters encrypted_number (EncryptedNumber) – encrypted against a known pub-
lic key, i.e., one for which the private key is on this keyring.

Returns the int or float that encrypted_number was holding. N.B. if the number returned is an
integer, it will not be of type float.

Raises KeyError – If the keyring does not hold the private key that decrypts en-
crypted_number.

class phe.paillier.PaillierPublicKey(n)
Bases: object

Contains a public key and associated encryption methods.

Parameters n (int) – the modulus of the public key - see Paillier’s paper.

g
int – part of the public key - see Paillier’s paper.

n
int – part of the public key - see Paillier’s paper.

nsquare
int – n ** 2, stored for frequent use.

max_int
int – Maximum int that may safely be stored. This can be increased, if you are happy to redefine “safely”
and lower the chance of detecting an integer overflow.

encrypt(value, precision=None, r_value=None)
Encode and Paillier encrypt a real number value.

Parameters

• value – an int or float to be encrypted. If int, it must satisfy abs(value) < n/3. If float,
it must satisfy abs(value / precision) << n/3 (i.e. if a float is near the limit then detectable
overflow may still occur)
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• precision (float) – Passed to EncodedNumber.encode(). If value is a float
then precision is the maximum absolute error allowed when encoding value. Defaults to
encoding value exactly.

• r_value (int) – obfuscator for the ciphertext; by default (i.e. if r_value is None), a
random value is used.

Returns An encryption of value.

Return type EncryptedNumber

Raises ValueError – if value is out of range or precision is so high that value is rounded to
zero.

encrypt_encoded(encoding, r_value)
Paillier encrypt an encoded value.

Parameters

• encoding – The EncodedNumber instance.

• r_value (int) – obfuscator for the ciphertext; by default (i.e. if r_value is None), a
random value is used.

Returns An encryption of value.

Return type EncryptedNumber

get_random_lt_n()
Return a cryptographically random number less than n

raw_encrypt(plaintext, r_value=None)
Paillier encryption of a positive integer plaintext < n.

You probably should be using encrypt() instead, because it handles positive and negative ints and
floats.

Parameters

• plaintext (int) – a positive integer < n to be Paillier encrypted. Typically this is an
encoding of the actual number you want to encrypt.

• r_value (int) – obfuscator for the ciphertext; by default (i.e. r_value is None), a
random value is used.

Returns Paillier encryption of plaintext.

Return type int

Raises TypeError – if plaintext is not an int.

phe.paillier.generate_paillier_keypair(private_keyring=None, n_length=2048)
Return a new PaillierPublicKey and PaillierPrivateKey .

Add the private key to private_keyring if given.

Parameters

• private_keyring (PaillierPrivateKeyring) – a
PaillierPrivateKeyring on which to store the private key.

• n_length – key size in bits.

Returns The generated PaillierPublicKey and PaillierPrivateKey

Return type tuple
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6.2 Encoding

class phe.encoding.EncodedNumber(public_key, encoding, exponent)
Bases: object

Represents a float or int encoded for Paillier encryption.

For end users, this class is mainly useful for specifying precision when adding/multiplying an
EncryptedNumber by a scalar.

If you want to manually encode a number for Paillier encryption, then use encode(), if de-serializing then
use __init__().

Note: If working with other Paillier libraries you will have to agree on a specific BASE and LOG2_BASE -
inheriting from this class and overriding those two attributes will enable this.

Notes

Paillier encryption is only defined for non-negative integers less than PaillierPublicKey.n. Since we
frequently want to use signed integers and/or floating point numbers (luxury!), values should be encoded as a
valid integer before encryption.

The operations of addition and multiplication1 must be preserved under this encoding. Namely:

1. Decode(Encode(a) + Encode(b)) = a + b

2. Decode(Encode(a) * Encode(b)) = a * b

for any real numbers a and b.

Representing signed integers is relatively easy: we exploit the modular arithmetic properties of the Paillier
scheme. We choose to represent only integers between +/-max_int, where max_int is approximately n/3
(larger integers may be treated as floats). The range of values between max_int and n - max_int is reserved for
detecting overflows. This encoding scheme supports properties #1 and #2 above.

Representing floating point numbers as integers is a harder task. Here we use a variant of fixed-precision
arithmetic. In fixed precision, you encode by multiplying every float by a large number (e.g. 1e6) and rounding
the resulting product. You decode by dividing by that number. However, this encoding scheme does not satisfy
property #2 above: upon every multiplication, you must divide by the large number. In a Paillier scheme, this is
not possible to do without decrypting. For some tasks, this is acceptable or can be worked around, but for other
tasks this can’t be worked around.

In our scheme, the “large number” is allowed to vary, and we keep track of it. It is:

BASE ** exponent

One number has many possible encodings; this property can be used to mitigate the leak of information due to
the fact that exponent is never encrypted.

For more details, see encode().

Parameters
1 Technically, since Paillier encryption only supports multiplication by a scalar, it may be possible to define a secondary encoding scheme

Encode’ such that property #2 is relaxed to:
Decode(Encode(a) * Encode’(b)) = a * b

We don’t do this.
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• public_key (PaillierPublicKey) – public key for which to encode (this is neces-
sary because max_int varies)

• encoding (int) – The encoded number to store. Must be positive and less than
max_int.

• exponent (int) – Together with BASE, determines the level of fixed-precision used in
encoding the number.

public_key
PaillierPublicKey – public key for which to encode (this is necessary because max_int varies)

encoding
int – The encoded number to store. Must be positive and less than max_int.

exponent
int – Together with BASE, determines the level of fixed-precision used in encoding the number.

BASE = 16
Base to use when exponentiating. Larger BASE means that exponent leaks less information. If you vary
this, you’ll have to manually inform anyone decoding your numbers.

FLOAT_MANTISSA_BITS = 53

LOG2_BASE = 4.0

decode()
Decode plaintext and return the result.

Returns

the decoded number. N.B. if the number returned is an integer, it will not be of type float.

Return type an int or float

Raises OverflowError – if overflow is detected in the decrypted number.

decrease_exponent_to(new_exp)
Return an EncodedNumber with same value but lower exponent.

If we multiply the encoded value by BASE and decrement exponent, then the decoded value does not
change. Thus we can almost arbitrarily ratchet down the exponent of an EncodedNumber - we only run
into trouble when the encoded integer overflows. There may not be a warning if this happens.

This is necessary when adding EncodedNumber instances, and can also be useful to hide information
about the precision of numbers - e.g. a protocol can fix the exponent of all transmitted EncodedNumber
to some lower bound(s).

Parameters new_exp (int) – the desired exponent.

Returns

Instance with the same value and desired exponent.

Return type EncodedNumber

Raises ValueError – You tried to increase the exponent, which can’t be done without decryp-
tion.

classmethod encode(public_key, scalar, precision=None, max_exponent=None)
Return an encoding of an int or float.

This encoding is carefully chosen so that it supports the same operations as the Paillier cryptosystem.

If scalar is a float, first approximate it as an int, int_rep:
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scalar = int_rep * (BASE ** exponent),

for some (typically negative) integer exponent, which can be tuned using precision and max_exponent.
Specifically, exponent is chosen to be equal to or less than max_exponent, and such that the number
precision is not rounded to zero.

Having found an integer representation for the float (or having been given an int scalar), we then represent
this integer as a non-negative integer < n.

Paillier homomorphic arithemetic works modulo n. We take the convention that a number x < n/3 is
positive, and that a number x > 2n/3 is negative. The range n/3 < x < 2n/3 allows for overflow detection.

Parameters

• public_key (PaillierPublicKey) – public key for which to encode (this is nec-
essary because n varies).

• scalar – an int or float to be encrypted. If int, it must satisfy abs(value) < n/3. If float,
it must satisfy abs(value / precision) << n/3 (i.e. if a float is near the limit then detectable
overflow may still occur)

• precision (float) – Choose exponent (i.e. fix the precision) so that this number is
distinguishable from zero. If scalar is a float, then this is set so that minimal precision is
lost. Lower precision leads to smaller encodings, which might yield faster computation.

• max_exponent (int) – Ensure that the exponent of the returned EncryptedNumber is
at most this.

Returns Encoded form of scalar, ready for encryption against public_key.

Return type EncodedNumber

6.3 Utilities

phe.util.base64_to_int(source)

phe.util.base64url_decode(payload)

phe.util.base64url_encode(payload)

phe.util.getprimeover(N)
Return a random N-bit prime number using the System’s best Cryptographic random source.

Use GMP if available, otherwise fallback to PyCrypto

phe.util.improved_i_sqrt(n)
taken from http://stackoverflow.com/questions/15390807/integer-square-root-in-python Thanks, mathmandan

phe.util.int_to_base64(source)

phe.util.invert(a, b)
The multiplicitive inverse of a in the integers modulo b.

Return int x, where a * x == 1 mod b

phe.util.isqrt(N)
returns the integer square root of N

phe.util.powmod(a, b, c)
Uses GMP, if available, to do a^b mod c where a, b, c are integers.

Return int (a ** b) % c

28 Chapter 6. API Documentation

http://stackoverflow.com/questions/15390807/integer-square-root-in-python


CHAPTER 7

Compatibility with other libraries

This library may, with care, be used with other Paillier implementations. Keep in mind, that in this library the generator
g of the public key is fixed to g = n + 1 (for efficiency reasons) and cannot arbitrarily be chosen as described in the
Paillier paper.

• Javallier - library for Java/Scala also maintained by NICTA. Somewhat different Encoding scheme. Base of 2 is
fixed (see Alternative Base for EncodedNumber)

• paillier.js - Early prototype library for Javascript/Typescript

7.1 Alternative Libraries

These are brief notes on the libraries that we looked at before embarking on writing our own.

7.1.1 Python Libraries

charm-crypto

> Charm is a framework for rapidly prototyping advanced cryptosystems. Based on > the Python language, it was
designed from the ground up to minimize development > time and code complexity while promoting the reuse of
components. > > Charm uses a hybrid design: performance intensive mathematical operations are > implemented in
native C modules, while cryptosystems themselves are written in > a readable, high-level language. Charm additionally
provides a number of new > components to facilitate the rapid development of new schemes and protocols.

http://charm-crypto.com/Main.html

Paillier Code, Pascal Paillier (Public-Key)

https://github.com/JHUISI/charm/blob/master/charm/schemes/pkenc/pkenc_paillier99.py

Worth looking at their object hierarchy, e.g., http://jhuisi.github.io/charm/toolbox/PKEnc.html They use a Ciphertext
class which has the __add__ and __mul__ methods overridden.
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Example:

>>> from charm.toolbox.integergroup import RSAGroup
>>> group = RSAGroup()
>>> pai = Pai99(group)
>>> (public_key, secret_key) = pai.keygen()
>>> msg_1=12345678987654321
>>> msg_2=12345761234123409
>>> msg_3 = msg_1 + msg_2
>>> msg_1 = pai.encode(public_key['n'], msg_1)
>>> msg_2 = pai.encode(public_key['n'], msg_2)
>>> msg_3 = pai.encode(public_key['n'], msg_3)
>>> cipher_1 = pai.encrypt(public_key, msg_1)
>>> cipher_2 = pai.encrypt(public_key, msg_2)
>>> cipher_3 = cipher_1 + cipher_2
>>> decrypted_msg_3 = pai.decrypt(public_key, secret_key, cipher_3)
>>> decrypted_msg_3 == msg_3
True

They have even got it going on Android: http://jhuisi.github.io/charm/mobile.html

mikeivanov/paillier

> Pure Python Paillier Homomorphic Cryptosystem

Very simple easy to understand code. Doesn’t use a Paillier object. No external dependencies. Based on the java
library: https://code.google.com/p/thep/

https://github.com/mikeivanov/paillier

Example Usage:

>>> from paillier import *
>>> priv, pub = generate_keypair(128)
>>> x = encrypt(pub, 2)
>>> y = encrypt(pub, 3)
>>> x,y
(72109737005643982735171545918..., 9615446835366886883470187...)
>>> z = e_add(pub, x, y)
>>> z
71624230283745591274688669...
>>> decrypt(priv, pub, z)
5

Tests:

Could easily be reused.

https://github.com/mikeivanov/paillier/blob/master/tests/test_paillier.py

encrypted-bigquery-client

License: Apache 2.0

> Paillier encryption to perform homomorphic addition on encrypted data
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The ebq client is an experimental client which encrypts data in the specified fields before loading to Bigquery service.
Currently there are various limitations including support for only a subset of query types on encrypted data.

Paillier specific code:

http://pydoc.net/Python/encrypted_bigquery/1.0/paillier/

Uses openssl via ctypes.

Features a Paillier object with the following methods:

• __init__(seed=None, g=None, n=None, Lambda=None, mu=None)

• Encrypt(plaintext, r_value=None)

• Decrypt(ciphertext)

• Add(ciphertext1, ciphertext2) - returns E(m1 + m2) given E(m1) and E(m2)

• Affine(self, ciphertext, a=1, b=0) - Returns E(a*m + b) given E(m), a and b

• EncryptInt64/DecryptInt64 - twos complement to allow negative addition

• EncryptFloat/DecryptFloat - IEEE754 binary64bit where exponent <= 389

Code is well documented python2. Most arguments are long or int types. There is also a comprehensive unit test at
http://pydoc.net/Python/encrypted_bigquery/1.0/paillier_test/

Even if we don’t reuse any of their code the tests would be great.

#### Floating point notes in code:

Paillier homomorphic addition only directly adds positive binary values, however, we would like to add both positive
and negative float values of different magnitudes. To achieve this, we will:

• represent the mantissa and exponent as one long binary value. This means that with 1024 bit n in paillier, the
maximum exponent value is 389 bits.

• represent negative values with twos complement representation.

• Nan, +inf, -inf are each indicated by values in there own 32 bit region, so that when one of them is added, the
appropriate region would be incremented and we would know this in the final aggregated value, assuming less
than 2^32 values were aggregated.

• We limit the number of numbers that can be added to be less than 2^32 otherwise we would not be able to detect
overflows properly, etc.

• Also, in order to detect overflow after adding multiple values, the 64 sign bit is extended (or replicated) for an
additional 64 bits. This allows us to detect if an overflow happened and knowing whether the most significant
32 bits out of 64 is zeroes or ones, we would know if the result should be a +inf or -inf.

Project Home: https://code.google.com/p/encrypted-bigquery-client/

7.1.2 C/C++

Encounter

> Encounter is a software library aimed at providing a production-grade > implementation of cryptographic counters

To date, Encounter implements a cryptocounter based on the Paillier public-key cryptographic scheme

https://github.com/secYOUre/Encounter
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FNP privacy-preserving set intersection protocol

A toolchain and library for privacy-preserving set intersection

It comes with rudimentary command-line interface: client, server, and key-generation tool. Extension and reuse is
possible through C++ interfaces. The implementation is fully thread-aware and multi-core ready, thus computation
time can be shortened by modern many-core machines. We have verified significant performance gains with quad-core
Xeons and Opterons, through the use of bucket allocation in the algorithm.

For homomorphic encryption and decryption, both modified ElGamal cryptosystem and Paillier cryptosystem have
been implemented on top of gmp. And yes, the source of randomness is always a headache for cryptosystem imple-
menters; we have keyboard, file and network packet as the sources of entropy.

It requires OpenSSL, gmp, gmpxx, boost, pthread, and pcap to build. It currently runs on Linux.

http://fnp.sourceforge.net/

libpaillier

Library written in C and uses GMP. The privss toolkit for private stream searching is built on libpaillier.

http://hms.isi.jhu.edu/acsc/libpaillier/

### HElib

> HElib is a software library that implements homomorphic encryption (HE). > Currently available is an implementa-
tion of the Brakerski-Gentry-Vaikuntanathan > (BGV) scheme, along with many optimizations to make homomorphic
evaluation runs > faster, focusing mostly on effective use of the Smart-Vercauteren ciphertext > packing techniques
and the Gentry-Halevi-Smart optimizations. > > At its present state, this library is mostly meant for researchers work-
ing on > HE and its uses. Also currently it is fairly low-level, and is best thought of > as “assembly language for HE”.
That is, it provides low-level routines (set, add, > multiply, shift, etc.), with as much access to optimizations as we can
give. > Hopefully in time we will be able to provide higher-level routines.

https://github.com/shaih/HElib

Must read: http://tommd.github.io/posts/HELib-Intro.html

rinon/Simple-Homomorphic-Encryption

Another C++ fully homomorphic encryption implementation.

https://github.com/rinon/Simple-Homomorphic-Encryption

7.1.3 Javascript

Javascript Cryptography Considered Harmful - http://www.matasano.com/articles/javascript-cryptography/

mhe/jspaillier

Adds the methods to the Public and Private keys.

Dependencies: jsbn Demo Site: http://mhe.github.io/jspaillier/
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p2p-paillier

> allows a peer to add two numbers over a peer-to-peer network. Peers add > these two numbers without even knowing
what they are. It uses Firebase > (which is centralized) in order to push commands to the peers.

Demo: http://9ac345a5509a.github.io/p2p-paillier/ Code: https://github.com/9ac345a5509a/p2p-paillier

7.1.4 Haskell

There is a decent-looking haskell paillier library: https://github.com/onemouth/HsPaillier

BSD license

There’s just one test, which encrypts 37, decrypts it, and checks that it’s still 37.

7.1.5 Java

There are a bunch of paillier libraries for java.

Are there any tests?

UT Dallas

This one has documentation and two implementations:

https://www.utdallas.edu/~mxk093120/paillier/javadoc/paillierp/package-summary.html

Provides the structures and methods to encrypt data with the Paillier encryption scheme with thresholding.
This package a simplified implementation of what is specified in the paper A Generalization of Paillier’s
Public-Key System with Applications to Electronic Voting by Damgård et al. Within this paper, the
authors generalize the Paillier encryption scheme to permit computations modulo ns+1, allowing block
length for encryption to be chosen freely. In addition to this undertaking, Damgård et al. also constructed
a threshold variant of the scheme.

This package provides the following features of the paper

• The degree of n is fixed to 1.

• A fully functional simple Paillier encryption scheme with separate key classes for easy keyshar-
ing.

• Proper Thresholding for an arbitrary number of decryption servers and threshold needed to
decrypt.

• Non-interactive zero knowledge proofs to ensure proper encryption and decryption.

Of particular note, this implementation is simple as s is fixed to be 1. This allows for simplicity at this
stage of the design. Further, we hope to have added methods which would make the actual use of this
package to be easy and flexible.

Future features would include support for encrypting arbitrary length strings/byte arrays to avoid padding
issues.

BGU Crypto course

This one is also documented but is for a crypto course so I’m not sure how complete/practical it is intended to be. For
example, it does its own keygen using java.util.Random. https://code.google.com/p/paillier-cryptosystem/
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UMBC

This one is mercifully short but doesn’t implement add, multiply as functions or methods. Also it uses
java.util.Random.

http://www.csee.umbc.edu/~kunliu1/research/Paillier.html
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CHAPTER 8

Example

>>> from phe import paillier
>>> public_key, private_key = paillier.generate_paillier_keypair()
>>> secret_number_list = [3.141592653, 300, -4.6e-12]
>>> encrypted_number_list = [public_key.encrypt(x) for x in secret_number_list]
>>> [private_key.decrypt(x) for x in encrypted_number_list]
[3.141592653, 300, -4.6e-12]

See Usage for more extensive examples taking advantage of the homomorphic properties of the paillier cryptosystem.

Documentation generated

Jan 25, 2018
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